jsonpublish Documentation
Release 0.1.3

Andrey Popp

December 03, 2014

Contents

1 Custom types serialization

2 Parametrized adapters

3 Reporting bugs and working on jsonpublish
4 API reference

Python Module Index

11

jsonpublish Documentation, Release 0.1.3

This package provides configurable JSON encoder based on simplejson or json module from Python’s standard
library.

When and why you should use jsonpublish:
* You want all JSON serialization code to be in one place.
* You want your serialization code to be flexible and structured.

* Sometimes you want to alter serialization for some objects.

Contents 1

http://simplejson.readthedocs.org/en/latest/index.html#module-simplejson
http://docs.python.org/library/json.html#module-json

jsonpublish Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Custom types serialization

Suppose you have some data of your application modeled as Python’s classes (it may be, for example, Django models
or just plain old Python’s classes):

class User (object):

def _ init__ (self, username, birthday):
self.username = username
self.birthday = birthday

Now if you want to serialize User objects as JSON documents you can’t simply use json module, because it just
doesn’t know how to represent your objects as JSON documents. So you need to write a function which converts
User objects to something which can be serialized, for example dict. With time your app grows and complexity
grows along so you need somehow to structure you serialization machinery, let’s see how jsonpublish can help us
there:

from jsonpublish import register_adapter

@register_adapter (User)
def adapt_user (user) :
return {
"username": user.username,
"pirthday": user.birthday
}

Now you can serialize your User objects:

>>> from jsonpublish import dumps
>>> print dumps (User ("andrey"”, 1987))
{"username": "andrey", "birthday": 1987}

http://docs.python.org/library/json.html#module-json

jsonpublish Documentation, Release 0.1.3

4 Chapter 1. Custom types serialization

CHAPTER 2

Parametrized adapters

Sometimes you want to alter serialization of some object, For example, let’s write another adapter for User objects
which can change it behaviour based on arguments given:

@register_adapter (User)
def adapt_user (user, include_birthday=True) :
if include_birthday:
return
"username": user.username,
"birthday": user.birthday
}
else:
return {"username": user.username}

The question now is how to pass include_birthday keyword argument right to adapter, the answer is to use
Jjsonpublish. jsonsettings():

>>> from jsonpublish import jsonsettings
>>> user = User ("andrey", 1987)
>>> user_m = jsonsettings(user, include_birthday=False)

>>> print dumps (user)
{"username": "andrey", "birthday": 1987}

>>> print dumps (user_m)
{"username": "andrey"}

As you can see, by wrapping our User objectin jsonpublish. jsonsettings () we can pass arbitrary keyword
arguments to corresponding adapter so we can alter serialization by per-object basis.

Function jsonsettings actually doesn’t alter object in any way, it just “annotates” it with some metadata needed
for corresponding adapter. You can work with wrapped object as before — all methods and attributes are still there and
even isinstance check works the right way:

>>> user_m == user

True

>>> user_m.username

"andrey"

>>> isinstance (user_m, User)
True

jsonpublish Documentation, Release 0.1.3

6 Chapter 2. Parametrized adapters

CHAPTER 3

Reporting bugs and working on jsonpublish

Development takes place at GitHub, you can clone source code repository with the following command:

)

% git clone git://github.com/andreypopp/jsonpublish.git

In case submitting patch or GitHub pull request please ensure you have corresponding tests for your bugfix or new
functionality.

http://github.com/andreypopp/jsonpublish

jsonpublish Documentation, Release 0.1.3

8 Chapter 3. Reporting bugs and working on jsonpublish

CHAPTER 4

API reference

jsonpublish.dumps (obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, in-
dent=None, separators=None, encoding="utf-8’, default=None, use_decimal=True,

namedtuple_as_object=True, tuple_as_array=True, **kw)
Serialize obj using globally configured JSON encoder

Accepted arguments are the same as json . dumps () accepts

jsonpublish.register_adapter (typ, adapter=None)
Register adapter for type typ

If no adapter supplied then this method returns decorator.

jsonpublish. jsonsettings (o, **seftings)
Create a proxy which carries JSON encoder settings

class jsonpublish.JSONEncoder (*args, **kwargs)
Configurable JSON encoder

It serializes object by consulting adapter registry. Registry can be modified by accessing adapters attribute of
encoder which is of type AdapterRegistry.

Attr adapters instance of AdapterRegistry which is used for serialization by encoder

encode (0)
Return a JSON string representation of a Python data structure.

>>> JSONEncoder () .encode ({"foo": ["bar", "baz"l})
’ {llfOO": [llbar"’ llbazllj }I
iterencode (0, _one_shot=False)
Encode the given object and yield each string representation as available.

For example:

for chunk in JSONEncoder () .iterencode (bigobject) :
mysocket.write (chunk)

class jsonpublish.AdapterRegistry
Registry of adapters

lookup_adapter (typ)
Lookup adapter for typ

register_adapter (typ, adapter=None)
Register adapter for type typ

If no adapter supplied then this method returns decorator.

http://docs.python.org/library/json.html#json.dumps

jsonpublish Documentation, Release 0.1.3

10 Chapter 4. API reference

Python Module Index

j

jsonpublish, 9

11

jsonpublish Documentation, Release 0.1.3

12 Python Module Index

Index

A

AdapterRegistry (class in jsonpublish), 9

D

dumps() (in module jsonpublish), 9

E

encode() (jsonpublish.JSONEncoder method), 9

iterencode() (jsonpublish.JSONEncoder method), 9

J

JSONEncoder (class in jsonpublish), 9
jsonpublish (module), 9
jsonsettings() (in module jsonpublish), 9

L

lookup_adapter() (jsonpublish.AdapterRegistry method),
9

R

register_adapter() (in module jsonpublish), 9
register_adapter() (jsonpublish.AdapterRegistry method),
9

13

	Custom types serialization
	Parametrized adapters
	Reporting bugs and working on jsonpublish
	API reference
	Python Module Index

